• 摩登三注册登录网址_骨源因子的神经奥秘!科学家找到调控中枢神经的全新信号接收器

    摩登三注册登录网址_骨源因子的神经奥秘!科学家找到调控中枢神经的全新信号接收器

    长期以来,人们认为骨骼只是一种具有支撑和保护作用的器官,而近20年来,逐渐有研究发现,骨骼还能作为一种分泌器官,通过分泌不同的骨源因子,对骨以外的各类器官产生影响,对中枢神经系统、免疫系统、能量代谢等方面具有调控功能。 10月22日,中国科学院深圳先进技术研究院脑认知与脑疾病研究所李翔团队的最新研究成果发表于Science Advances。研究团队历时4年,发现了骨钙素(OCN)对中枢神经系统中的少突胶质细胞的关键调节作用,并首次界定了介导骨钙素这一新中枢功能的全新受体——G蛋白偶联受体(GPR37)。 从骨源因子出发 探寻神经奥秘 如果将神经元的轴突比喻为天线,那么髓鞘就是天线外层的绝缘层,对神经元的信号传导起着保护作用。在大脑中,除了有成千上亿的神经元细胞外,还存在众多胶质细胞,起着连接和支持各种神经成分,分配营养物质、参与修复和吞噬的作用,而少突胶质细胞是形成中枢神经系统髓鞘的关键细胞。 作为形成中枢神经系统髓鞘的关键细胞,少突胶质细胞对维持神经元正常功能,形成绝缘的髓鞘结构、协助生物电信号的跳跃式高效传递具有非常关键作用。少突胶质细胞的功能异常则可能使髓鞘结构受损,造成髓鞘病变和神经元损伤并导致神经系统功能紊乱,引发一系列神经系统或精神疾病,如多发性硬化症等。 在研究初期,研究团队利用敲除了骨钙素基因的小鼠,通过免疫染色、蛋白杂交、电镜分析的方式发现,当小鼠被敲除骨钙素基因后,其髓鞘的厚度增加,科研人员由此确认了骨钙素对髓鞘的主要构成成分——少突胶质细胞有重要影响,并进一步发现,骨钙素的缺失,会影响少突胶质细胞分化以及髓鞘化的功能。 “髓鞘随着人体的发育而逐渐成熟,髓鞘太厚或太薄都是发育不良的表现,容易导致运动障碍、姿势异常,感知、沟通及行为障碍、智力发育落后等各类疾病等疾病。当人体在进行直立、行走、坐下、跑步等人体行动时,在一定程度上会刺激骨头分泌骨钙素,进而影响髓鞘中少突胶质细胞的分化功能,对中枢神经系统产生一定的调控作用。”李翔表示。 “孤儿受体”不孤单 界定全新信号接收器 究竟是什么接收骨钙素信号在中枢神经系统中发挥作用?为进一步探索骨钙素究竟与何种受体结合进而影响胶质细胞,研究团队利用RNA基因测序对比了骨钙素基因敲除小鼠与野生小鼠胼胝体区域的RNA表达,首次确定了GPR37为骨钙素在中枢神经系统中的新受体。 漫长的人类科学史中,众多科学家不懈努力凝结起了人类基因组库,这其中,有一类“孤儿受体”,它们是被科学家发现,但又无法界定其作用和匹配物质的受体。这其中,就包括G蛋白偶联受体(GPR37)。 在验证实验中,研究团队利用骨钙素敲除基因模型、GPR37基因敲除动物模型,通过整合电镜分析、免疫染色、行为分析等多学科研究手段,验证了骨钙素能够通过GPR37调节中枢神经系统少突胶质细胞分化和髓鞘化的作用,这为以骨钙素作为外周潜在靶点治疗中枢髓鞘病变提供了实验依据。 “我们利用各种基因敲除动物模型,并采用不同的研究手段,包括关键的电镜分析、免疫染色、RNA测序等。通过与中国科学生物物理所、蔡司中国、华大基因合作,在不同技术手段下,相互验证了本研究的重要成果。”李翔表示。 一直以来,科学家们不懈探索着骨钙素对中枢神经系统的影响。有研究发现,骨钙素能够通过血脑屏障作用于神经元,调控中枢神经系统,对大脑认知记忆功能产生影响。然而,目前对骨源性因子调节骨外器官,特别是中枢神经系统功能的具体机制尚不十分清楚。 研究团队首次界定了骨钙素在中枢神经系统功能调节中的新受体。通过深入探究骨钙素在中枢神经系统中的内在调控机制,从寻找“ 外周—中枢”关键调控分子出发,为从调节骨功能及骨源性因子角度探索维持神经系统功能新措施提供了理论依据,为相关神经系统疾病的临床干预新策略和新靶点提供了科学依据。 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三开户_三叠纪末生物大灭绝事件:真蕨植物是如何生存下来的?

    摩登三开户_三叠纪末生物大灭绝事件:真蕨植物是如何生存下来的?

    三叠纪末大灭绝事件和真蕨植物群落之间有什么关联呢?近年来,中国科学院南京地质古生物研究所研究员王永栋带领的国际科研团队首次聚焦该领域,用来自中国本土的化石发出中国的声音,相关研究成果日前发表于《全球与行星变化》。 一直以来,三叠纪末期生物大灭绝事件被认为是显生宙以来最严重的五次灭绝事件之一,全球海陆生态系统受到重创,并导致约80% 的物种消失。科研团队系统研究了我国华南四川盆地三叠纪—侏罗纪过渡期真蕨植物的多样性变化和生态环境,为探究陆地生态系统对三叠纪末期生物大灭绝事件的响应提供了新的证据。 “三叠纪末期生物大灭绝事件发生在约2亿年前后,相比于海洋而言,学术界对陆地生态系统的研究相对薄弱,尤其对植物大化石多样性丧失的严重程度缺乏系统的研究。”王永栋告诉《中国科学报》,追踪植物大化石属种多样性变化及生存环境,可为研究陆地植被的灭绝速率和演化模式提供更直观有效的方法。 为此,科研团队选择了演化历史久远的真蕨植物化石作为研究对象。因为真蕨植物是现代植物中数目显著且最具多样性的维管植物类群之一,其现生种的数量仅次于被子植物。 据悉,自3.8亿年的晚泥盆世始现以后,真蕨植物曾一度成为地史时期重要的植被成员和主导分子,经历了几次重大的系统学往复更替及演化辐射过程,也是唯一经历显生宙四次重大生物演化灭绝事件的陆生维管植物类群,是植物系统发育、大尺度宏演化过程及生态环境和气候变化的直接“见证者”。 科研团队对来自四川盆地16个产地的晚三叠世须家河组和早侏罗世珍珠冲组真蕨类植物化石记录的分析,共发现8科16属67种,其中在三叠纪—侏罗纪之交约有38个种消失,同时还有10个新种出现。 “结合大植物化石和孢粉化石记录,我们发现蕨类植物大化石及孢子化石在三叠纪—侏罗纪之交并没有出现明显的大规模灭绝事件,而是存在显著的植物种群更替现象。”王永栋解释道,这进一步揭示了在远离中大西洋火成岩省(CAMP)的东亚低纬度区域,植物类群对此次灭绝事件的响应程度。 此外,科研团队利用统计分析发现,三叠纪末的瑞替期呈现出温暖湿润的热带—亚热带气候特征,而早侏罗世特定的抗旱类群(如掌鳞杉科)明显增加,表明了侏罗纪早期环境趋于干热。 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三注册主管_多色聚集诱导发光碳点材料研究获进展 可用于多模式信息加密及指纹识别等

    摩登三注册主管_多色聚集诱导发光碳点材料研究获进展 可用于多模式信息加密及指纹识别等

    华南农业大学材料与能源学院生物基材料与能源教育部重点实验室、广东省光学农业工程技术研究中心教授刘应亮团队在多色聚集诱导发射的碳点材料研究中取得重要进展。相关研究近日发表于《先进材料》。 荧光碳点(CDs)是一类尺寸小于10 nm的类球形碳基纳米材料,具有制备简易、光学和表面性质可调、生物相容性优异等优良特性,广泛应用于生物传感器、生物成像、药物输送、发光器件和光催化领域。然而,共振能量转移或π-π堆叠引起的发光效率骤降甚至荧光猝灭阻碍了碳点在固态发光领域的应用。 早在2019年,刘应亮团队首次提出了基于表面基团的聚集诱导发光效应构筑红色固态碳点(AIE-CDs)的策略,为解决碳点的自猝灭问题提供了一种新思路。然而,目前对于这一类碳点的发光机理的研究仍然不够深入,如何调控这类碳点的结构以获得不同发光颜色的固态发光材料对于拓展其应用具有重要的意义。 研究人员以二硫代水杨酸和不同氮原子数的小分子胺为前驱体,制备了不同发光颜色的AIE-CDs。这些AIE-CDs具有蓝光(Em-1: 480nm)和红光(Em-2: 近600nm)的双发射中心,这分别与二硫代水杨酸的S-S键和C=O/C=N键上的共轭结构有关。经研究发现,由氮含量较高的前驱体制备的CDs具有更强的红光发射和红移现象。 研究人员验证了Em-1和Em-2分别是由具有S-S键结构和连接到C=O/C=N带的共轭结构产生的荧光发光中心引起的,通过一系列对比实验验证了增加氮含量会诱导ICT从Em-1到Em-2变化。C=N含量的增加使得CDs表面的双荧光基团产生推拉电子,决定了分子内电荷转移(ICT)之间的双发射。随着C=N含量从35.6%增加到58.4%,ICT效率从8.71%增加到45.94%,CDs的荧光由绿色变为红色。随着ICT效率的提高,荧光量子产率提高近5倍,荧光峰发生红移。 在此基础上,研究人员利用AIE-CDs制备了显色指数为88的白光LED器件。此外,该碳点在多模式信息加密、指纹识别、植物叶片保护等领域也具有潜在的应用价值。 该研究对明确碳点结构、补充和完善碳点发光机理、扩展碳点应用等方面具有重要的意义。 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三招商登陆_塑料污染有办法了!微流控高通量筛选塑料解聚酶研究获新进展

    摩登三招商登陆_塑料污染有办法了!微流控高通量筛选塑料解聚酶研究获新进展

    中国科学院微生物研究所杜文斌团队在基于微流控超高通量荧光激活液滴分选平台(FADS)的塑料解聚微生物单细胞筛选方面取得新进展,相关研究近日发表于《危险性材料杂志》。 塑料污染是当今世界面临的最重要环境问题之一,不仅会破坏生物多样性、加剧气候变化,更危及人类和地球的健康。微生物降解塑料是最理想最环保的方法,也是近年来的研究重点。目前已发现众多环境和宏基因组分析来源的塑料解聚微生物和酶,后续也利用理性和半理性设计改造以满足在活性和热稳定性等方面需求。但目前降解塑料的微生物和酶种类少、降解效率低,因此亟需进行塑料降解酶的挖掘、改良及应用开发。 杜文斌课题组长期致力于推动微流控创新技术的产业化应用,并将微流控技术应用于环境不可培养和极端微生物资源获取等方面。该团队最新基于FADS的塑料解聚微生物单细胞筛选研究,优化了高通量筛选平台性能以及与环境样品筛选的兼容性,筛选通量达1000液滴/秒,分选准确率达到99.95%以上。 较传统筛选手段而言,FADS提供了海量微生物和酶突变体单细胞精准筛选的新平台。其筛选过程包括三个步骤:单细胞的液滴包裹和孵育、PET模拟底物荧光素二苯甲酸酯(FDBz)的皮升液滴注射,以及反应后单细胞液滴的超高通量筛选。基于此,团队从来自PET纺织厂的废水真实样本中获得了10多株PET解聚微生物类群菌株。并从高活性菌株中成功获得了两个可利用工程菌株异源表达的潜在PET降解新酶,并初步验证了菌株和新酶的降解活性。后续团队将致力将FADS筛选技术推广到其他塑料(如PE、PP、PS、PU等)降解菌和新酶的高通量挖掘和改造。 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三主管工资_应用前景广阔!嵌合外泌体的发现将为肿瘤免疫治疗带来新思路

    摩登三主管工资_应用前景广阔!嵌合外泌体的发现将为肿瘤免疫治疗带来新思路

    21日,记者从中科院过程工程所获悉,该所研究人员创建了一种嵌合外泌体,实现了淋巴结和肿瘤组织的双重靶向,以此激活了淋巴结内免疫应答,并改善了肿瘤免疫微环境。该双效协同机制在多种动物模型上显著抑制了肿瘤进展,为肿瘤免疫治疗带来新思路。相关成果在线发表于《科学·转化医学》。 外泌体是细胞分泌的一种囊泡型天然生物颗粒,在体内具有独特的转运路径和生物学功能,以此创建的新剂型有望在体内复杂环境下实现精准递送和预期疗效,在肿瘤个体化治疗领域应用前景广阔。 “现有的大部分肿瘤免疫治疗侧重于提升体内免疫细胞功能和数量,但通常难以克服实体肿瘤部位的免疫抑制微环境,使得瘤内浸润的免疫细胞难以有效发挥其抗肿瘤功能。”中科院过程工程所研究员马光辉说。 为此,研究人员结合十余年颗粒剂型、疫苗递送和肿瘤免疫的研究经验,提出了淋巴结-肿瘤双靶向型外泌体用于双效协同肿瘤免疫治疗的新策略。研究团队选择了具有强吞噬能力的巨噬细胞对肿瘤细胞核进行摄取,经过体外免疫驯化后形成免疫激活型巨噬—肿瘤杂合细胞。该细胞分泌的巨噬—肿瘤嵌合外泌体能够继承两种来源细胞的功能,双重靶向到淋巴结和肿瘤组织,同时实现淋巴结内免疫应答激活和肿瘤免疫微环境改善。 中科院过程工程所研究员魏炜表示,这项成果属于临床前研究,实际临床疗效仍有待进一步验证。鉴于制备嵌合外泌体的材料均为患者自身细胞,该制剂在临床肿瘤个体化治疗领域具有较好的转化前景。(记者陆成宽) 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三注册主管_塑料污染有办法了!微流控高通量筛选塑料解聚酶研究获新进展

    摩登三注册主管_塑料污染有办法了!微流控高通量筛选塑料解聚酶研究获新进展

    中国科学院微生物研究所杜文斌团队在基于微流控超高通量荧光激活液滴分选平台(FADS)的塑料解聚微生物单细胞筛选方面取得新进展,相关研究近日发表于《危险性材料杂志》。 塑料污染是当今世界面临的最重要环境问题之一,不仅会破坏生物多样性、加剧气候变化,更危及人类和地球的健康。微生物降解塑料是最理想最环保的方法,也是近年来的研究重点。目前已发现众多环境和宏基因组分析来源的塑料解聚微生物和酶,后续也利用理性和半理性设计改造以满足在活性和热稳定性等方面需求。但目前降解塑料的微生物和酶种类少、降解效率低,因此亟需进行塑料降解酶的挖掘、改良及应用开发。 杜文斌课题组长期致力于推动微流控创新技术的产业化应用,并将微流控技术应用于环境不可培养和极端微生物资源获取等方面。该团队最新基于FADS的塑料解聚微生物单细胞筛选研究,优化了高通量筛选平台性能以及与环境样品筛选的兼容性,筛选通量达1000液滴/秒,分选准确率达到99.95%以上。 较传统筛选手段而言,FADS提供了海量微生物和酶突变体单细胞精准筛选的新平台。其筛选过程包括三个步骤:单细胞的液滴包裹和孵育、PET模拟底物荧光素二苯甲酸酯(FDBz)的皮升液滴注射,以及反应后单细胞液滴的超高通量筛选。基于此,团队从来自PET纺织厂的废水真实样本中获得了10多株PET解聚微生物类群菌株。并从高活性菌株中成功获得了两个可利用工程菌株异源表达的潜在PET降解新酶,并初步验证了菌株和新酶的降解活性。后续团队将致力将FADS筛选技术推广到其他塑料(如PE、PP、PS、PU等)降解菌和新酶的高通量挖掘和改造。 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三开户_突破产业链壁垒!新技术有望提升超高分子量聚乙烯产能10倍以上

    摩登三开户_突破产业链壁垒!新技术有望提升超高分子量聚乙烯产能10倍以上

    说到超高分子量聚乙烯,相信这么专业、抽象的术语,很少有人知道它是做什么用的。实际上,它在我们的航空航天、国防军工、海洋工程、石油化工、医疗器械等领域发挥着举足轻重的作用。人工关节、电梯导轨、输油管道……这些材料都用到超高分子量聚乙烯。 但一直以来,超高分子量聚乙烯制品的高效高品质制造都是世界性难题。中国工程院院士、华南理工大学教授瞿金平团队聚焦这一技术难题,通过不懈努力,自主研发出超高分子量聚乙烯制品短流程高效制造技术,突破产品大规模推广应用的技术壁垒,从而带动上下游全产业链技术升级。 向世界难题发起技术攻关 “超高分子量聚乙烯具备众多优异的性能,因为其分子量特别大,是普通聚乙烯的十倍甚至上百倍,用它制作制品稳定性好、耐磨损、耐腐蚀、耐冲击、防生物附着、生物相容性好,因而使用寿命长。”瞿金平团队成员、华南理工大学冯彦洪教授以人工关节为例介绍。 人工关节置换是治疗因外伤、运动损伤、退变老化等原因导致的股骨头坏死、关节损伤等疾病的有效手段之一。因为进入人体内使用,人工关节对材料要求极其苛刻。“由于超高分子量聚乙烯的生物相容性好,耐磨损,是非常好的人工关节材料。”冯彦洪说,“但是,如果超高分子量聚乙烯人工关节的制造技术不过关,使用过程如发生材料颗粒脱落,会产生炎症,引起患者的不适。” 令人遗憾的是,由于超高分子量聚乙烯的加工难度大,生产效率低,制作成本高昂,高效率高品质的制造成为一大技术难题,人工关节的材料与制品基本被国外垄断,价格昂贵。 2016年,在国家重点研发计划项目支持下,瞿金平院士团队开始向超高分子量聚乙烯发起技术攻关。 创新加工方式实现高效制造 “我们最初设想采用拉伸流变加工技术,从改变加工方式入手解决超高分子量聚乙烯高效高品质制造的国际难题。”冯彦洪介绍,拉伸流变技术属于高分子材料加工方法的原始创新,由瞿金平院士在国际上率先提出并成功发明。 瞿金平带领团队所取得的国际首创成果“体积拉伸流变塑化输运技术”,彻底颠覆传统高分子材料加工原理。与传统技术比较,新技术加工热机械历程缩短50%以上、能耗降低30%左右,对物料适应性广,加工制品的性能大幅提高,利于节约资源和保护环境。“剪切流变就像石磨磨细混合物料,过强的剪切会使高分子的大分子链断裂;而拉伸流变就像手擀面和面,通过反复的压缩、拉伸、折叠作用实现物料的混合,高分子的大分子链断裂很少,更适用于超高分子量聚乙烯等极端流变塑料的加工成型。”瞿金平介绍。 “在此之上,我们可以高效、高质量生产出超高分子量聚乙烯系列制品,从而形成超高分子聚乙烯制品短流程高效制造技术,突破产品大规模推广应用的技术壁垒。”冯彦洪说。 新技术生产效率提高10倍以上 超高分子聚乙烯制品短流程高效制造技术是一个全新的技术,它以国际首创的基于拉伸流变的偏心转子加工方法代替了传统的基于剪切流变的螺杆加工方法,使高性能超高分子量聚乙烯的高效生产成为可能。 新技术的出现,使极难加工的超高分子量聚乙烯生产效率提高10倍以上。“以管材为例生产,传统技术一般只能做到每小时4米,而新技术能够做到每小时40米以上,有效降低了产品库存和资金占用成本。”冯彦洪说。据介绍,新技术下生产的制品缺陷减少,制品性能显著提高;产品均匀性、稳定性也有所提升;而且可以高效率地生产分子量超过300万的制品,带动了高端应用市场的需求,有效推动超高分子量聚乙烯制品在石油化工、矿山疏浚、海洋工程、医疗器械等领域的大规模推广应用。 新技术产生巨大的经济和社会效益。“该技术节能降耗,绿色环保,用其替代钢材,可减少相应钢材制造的排放。”冯彦洪表示,由于具有自主知识产权,破解了超高分子量聚乙烯高效高品质加工国际难题,助推了相关产业链技术水平跨越式发展。在高端应用领域替代进口制品,产生了显著的经济效益。 去年5月,该技术相关知识产权以超2000万元的转让价格,在佛山顺利落地。目前,团队正致力于该技术在全国范围内的推广应用,以满足上游原材料研发、下游制品大规模应用的迫切需求,实现大范围的量产应用,带动全产业链的跨越式发展。(叶 青) 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三招商网址_应用前景广阔!嵌合外泌体的发现将为肿瘤免疫治疗带来新思路

    摩登三招商网址_应用前景广阔!嵌合外泌体的发现将为肿瘤免疫治疗带来新思路

    21日,记者从中科院过程工程所获悉,该所研究人员创建了一种嵌合外泌体,实现了淋巴结和肿瘤组织的双重靶向,以此激活了淋巴结内免疫应答,并改善了肿瘤免疫微环境。该双效协同机制在多种动物模型上显著抑制了肿瘤进展,为肿瘤免疫治疗带来新思路。相关成果在线发表于《科学·转化医学》。 外泌体是细胞分泌的一种囊泡型天然生物颗粒,在体内具有独特的转运路径和生物学功能,以此创建的新剂型有望在体内复杂环境下实现精准递送和预期疗效,在肿瘤个体化治疗领域应用前景广阔。 “现有的大部分肿瘤免疫治疗侧重于提升体内免疫细胞功能和数量,但通常难以克服实体肿瘤部位的免疫抑制微环境,使得瘤内浸润的免疫细胞难以有效发挥其抗肿瘤功能。”中科院过程工程所研究员马光辉说。 为此,研究人员结合十余年颗粒剂型、疫苗递送和肿瘤免疫的研究经验,提出了淋巴结-肿瘤双靶向型外泌体用于双效协同肿瘤免疫治疗的新策略。研究团队选择了具有强吞噬能力的巨噬细胞对肿瘤细胞核进行摄取,经过体外免疫驯化后形成免疫激活型巨噬—肿瘤杂合细胞。该细胞分泌的巨噬—肿瘤嵌合外泌体能够继承两种来源细胞的功能,双重靶向到淋巴结和肿瘤组织,同时实现淋巴结内免疫应答激活和肿瘤免疫微环境改善。 中科院过程工程所研究员魏炜表示,这项成果属于临床前研究,实际临床疗效仍有待进一步验证。鉴于制备嵌合外泌体的材料均为患者自身细胞,该制剂在临床肿瘤个体化治疗领域具有较好的转化前景。(记者陆成宽) 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 摩登三官网注册_塑料污染有办法了!微流控高通量筛选塑料解聚酶研究获新进展

    摩登三官网注册_塑料污染有办法了!微流控高通量筛选塑料解聚酶研究获新进展

    中国科学院微生物研究所杜文斌团队在基于微流控超高通量荧光激活液滴分选平台(FADS)的塑料解聚微生物单细胞筛选方面取得新进展,相关研究近日发表于《危险性材料杂志》。 塑料污染是当今世界面临的最重要环境问题之一,不仅会破坏生物多样性、加剧气候变化,更危及人类和地球的健康。微生物降解塑料是最理想最环保的方法,也是近年来的研究重点。目前已发现众多环境和宏基因组分析来源的塑料解聚微生物和酶,后续也利用理性和半理性设计改造以满足在活性和热稳定性等方面需求。但目前降解塑料的微生物和酶种类少、降解效率低,因此亟需进行塑料降解酶的挖掘、改良及应用开发。 杜文斌课题组长期致力于推动微流控创新技术的产业化应用,并将微流控技术应用于环境不可培养和极端微生物资源获取等方面。该团队最新基于FADS的塑料解聚微生物单细胞筛选研究,优化了高通量筛选平台性能以及与环境样品筛选的兼容性,筛选通量达1000液滴/秒,分选准确率达到99.95%以上。 较传统筛选手段而言,FADS提供了海量微生物和酶突变体单细胞精准筛选的新平台。其筛选过程包括三个步骤:单细胞的液滴包裹和孵育、PET模拟底物荧光素二苯甲酸酯(FDBz)的皮升液滴注射,以及反应后单细胞液滴的超高通量筛选。基于此,团队从来自PET纺织厂的废水真实样本中获得了10多株PET解聚微生物类群菌株。并从高活性菌株中成功获得了两个可利用工程菌株异源表达的潜在PET降解新酶,并初步验证了菌株和新酶的降解活性。后续团队将致力将FADS筛选技术推广到其他塑料(如PE、PP、PS、PU等)降解菌和新酶的高通量挖掘和改造。 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

  • 沐鸣二1980注册_突破产业链壁垒!新技术有望提升超高分子量聚乙烯产能10倍以上

    沐鸣二1980注册_突破产业链壁垒!新技术有望提升超高分子量聚乙烯产能10倍以上

    说到超高分子量聚乙烯,相信这么专业、抽象的术语,很少有人知道它是做什么用的。实际上,它在我们的航空航天、国防军工、海洋工程、石油化工、医疗器械等领域发挥着举足轻重的作用。人工关节、电梯导轨、输油管道……这些材料都用到超高分子量聚乙烯。 但一直以来,超高分子量聚乙烯制品的高效高品质制造都是世界性难题。中国工程院院士、华南理工大学教授瞿金平团队聚焦这一技术难题,通过不懈努力,自主研发出超高分子量聚乙烯制品短流程高效制造技术,突破产品大规模推广应用的技术壁垒,从而带动上下游全产业链技术升级。 向世界难题发起技术攻关 “超高分子量聚乙烯具备众多优异的性能,因为其分子量特别大,是普通聚乙烯的十倍甚至上百倍,用它制作制品稳定性好、耐磨损、耐腐蚀、耐冲击、防生物附着、生物相容性好,因而使用寿命长。”瞿金平团队成员、华南理工大学冯彦洪教授以人工关节为例介绍。 人工关节置换是治疗因外伤、运动损伤、退变老化等原因导致的股骨头坏死、关节损伤等疾病的有效手段之一。因为进入人体内使用,人工关节对材料要求极其苛刻。“由于超高分子量聚乙烯的生物相容性好,耐磨损,是非常好的人工关节材料。”冯彦洪说,“但是,如果超高分子量聚乙烯人工关节的制造技术不过关,使用过程如发生材料颗粒脱落,会产生炎症,引起患者的不适。” 令人遗憾的是,由于超高分子量聚乙烯的加工难度大,生产效率低,制作成本高昂,高效率高品质的制造成为一大技术难题,人工关节的材料与制品基本被国外垄断,价格昂贵。 2016年,在国家重点研发计划项目支持下,瞿金平院士团队开始向超高分子量聚乙烯发起技术攻关。 创新加工方式实现高效制造 “我们最初设想采用拉伸流变加工技术,从改变加工方式入手解决超高分子量聚乙烯高效高品质制造的国际难题。”冯彦洪介绍,拉伸流变技术属于高分子材料加工方法的原始创新,由瞿金平院士在国际上率先提出并成功发明。 瞿金平带领团队所取得的国际首创成果“体积拉伸流变塑化输运技术”,彻底颠覆传统高分子材料加工原理。与传统技术比较,新技术加工热机械历程缩短50%以上、能耗降低30%左右,对物料适应性广,加工制品的性能大幅提高,利于节约资源和保护环境。“剪切流变就像石磨磨细混合物料,过强的剪切会使高分子的大分子链断裂;而拉伸流变就像手擀面和面,通过反复的压缩、拉伸、折叠作用实现物料的混合,高分子的大分子链断裂很少,更适用于超高分子量聚乙烯等极端流变塑料的加工成型。”瞿金平介绍。 “在此之上,我们可以高效、高质量生产出超高分子量聚乙烯系列制品,从而形成超高分子聚乙烯制品短流程高效制造技术,突破产品大规模推广应用的技术壁垒。”冯彦洪说。 新技术生产效率提高10倍以上 超高分子聚乙烯制品短流程高效制造技术是一个全新的技术,它以国际首创的基于拉伸流变的偏心转子加工方法代替了传统的基于剪切流变的螺杆加工方法,使高性能超高分子量聚乙烯的高效生产成为可能。 新技术的出现,使极难加工的超高分子量聚乙烯生产效率提高10倍以上。“以管材为例生产,传统技术一般只能做到每小时4米,而新技术能够做到每小时40米以上,有效降低了产品库存和资金占用成本。”冯彦洪说。据介绍,新技术下生产的制品缺陷减少,制品性能显著提高;产品均匀性、稳定性也有所提升;而且可以高效率地生产分子量超过300万的制品,带动了高端应用市场的需求,有效推动超高分子量聚乙烯制品在石油化工、矿山疏浚、海洋工程、医疗器械等领域的大规模推广应用。 新技术产生巨大的经济和社会效益。“该技术节能降耗,绿色环保,用其替代钢材,可减少相应钢材制造的排放。”冯彦洪表示,由于具有自主知识产权,破解了超高分子量聚乙烯高效高品质加工国际难题,助推了相关产业链技术水平跨越式发展。在高端应用领域替代进口制品,产生了显著的经济效益。 去年5月,该技术相关知识产权以超2000万元的转让价格,在佛山顺利落地。目前,团队正致力于该技术在全国范围内的推广应用,以满足上游原材料研发、下游制品大规模应用的迫切需求,实现大范围的量产应用,带动全产业链的跨越式发展。(叶 青) 责任编辑:kj005 文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com

更多...

加载中...